A new FPGA design based on Xilinx silicon can supercharge your products, but the development process can be daunting. System components, multi-core SoCs, IP, and toolsets... It’s a challenge to get it all done, but technology complexities don’t have to slow you down.

Whether you are building products for aerospace & defense or the medical market, you can get to market quickly and stand out from the competition with FPGA engineering services from DornerWorks.

Schedule a consultation with DornerWorks today so you can lead the market and get back to growing your business.

FRUSTRATION-FREE FPGA DEVELOPMENT

SUPERCHARGE YOUR XILINX TECHNOLOGY

DEVELOP QUICKLY RETAIN KNOWLEDGE

DornerWorks can help you understand crucial Xilinx tools so you can configure your FPGAs on your own.

DIVERSE & VERSATILE PLATFORMS

- Real-time video
- Time-synchronous networking
- Radio/RFSoc
- Machine learning
- DSP

MULTI-DISCIPLINE DESIGN PARTNER

- Turnkey solutions
- Design migration
- Algorithm implementation & acceleration
- Hypervisor-based separation
- Video processing IP
- Custom IP

DornerWorks.com | +1.616.245.8369
A major defense contractor, with FPGA engineering guidance from DornerWorks, developed a system that searches for and identifies moving targets with concealed explosive devices.

- Successfully reduced the size, weight, and power costs of an existing radar system on an AVNET MicroZed with a Zynq-7000 device.
- Optimized data throughput speeds.
- Integrated the customers’ existing ADC capture logic to receive ADC samples.

The DornerWorks MAF Endpoint FPGA IP was implemented on a system that detects and mitigates the threat of oncoming airborne explosive devices around the perimeter of military ground vehicles.

- Meets demands for MAPS.
- gPTP module with +/-8ns accuracy.
- Credit-based, strict-priority scheduling.

The IP was developed for Xilinx FPGAs. As part of the MAC IP, it enables support for multiple types of traffic over a common network to reduce costs.

A pair of Xilinx Zynq UltraScale+ devices was used to process up to seven 12MP 12-bit video streams, and up to three 1MP 8-bit video streams simultaneously.

- All video streams ran at 30 fps and were received via MIPI CSI-2 and parallel interfaces.
- The video was filtered, color corrected, color space converted, and multiplexed over a PCIe 3.0 x8 link to the system for additional video processing.
- The un-processed video was sent via a PCIe 3.0 x4 link to the system for logging.

The video was filtered, color corrected, color space converted, and multiplexed over a PCIe 3.0 x8 link to the system for additional video processing.

- All video streams ran at 30 fps and were received via MIPI CSI-2 and parallel interfaces.
- The video was filtered, color corrected, color space converted, and multiplexed over a PCIe 3.0 x8 link to the system for additional video processing.
- The un-processed video was sent via a PCIe 3.0 x4 link to the system for logging.

Connect with us now. Together we will map out a plan that meets your product goals and helps you lead the market.

GET STARTED TODAY

SCHEDULE A CONSULTATION

DornerWorks.com | +1.616.245.8369