
Virtuosity™, Xen Zynq
Distribution

User’s Manual

Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Revision History
The following table shows the revision history for this document.

Date
MM/DD/YYYY

Version Changes

03/30/2015 0.1 Converted Alpha Release Document using the Xilinx Template

04/22/2015 0.2 Updated steps and release to work with the beta version of PetaLinux

06/22/2015 0.3 Fixed the numbering scheme and added a section on non-Linux guests

09/24/2015 0.4 Added pass-through and alternative guest file system sections

02/16/2015 0.5 Using v2015.4 of Xilinx Tools and added support for the Xilinx ZCU102 board.

03/30/2016 0.6 Minor wording changes for clarity.

06/30/2016 0.7 Updated for v2016.1 of Xilinx Tools; added sections covering SD card boot,
xentop, and shared memory.

07/14/2016 0.8 Updated for v2016.2 of Xilinx tools.

07/21/2016 0.9 Revised SD card boot section (4.2.2.1) for clarity.

08/05/2016 0.10 Removed unused option from xen,dom0-bootargs.

09/26/2016 0.11 Revamped Chapter1, added Paravirtualization section to Chapter 8, and made
misc proofread edits.

09/27/2016 0.12 Added Bare Metal Container steps to Chapter 7.

09/30/2016 0.13 Added Chapter 8 to reference other guests, specifically FreeRTOS.
Minor corrections in section 4.2.2.1 and Chapter 7.

01/06/2017 0.14 Minor corrections.
Updated for v2016.3.
Added Ubuntu 16.04 as a recommended host.

03/20/2017 0.15 Minor corrections
Added link for QEMU documentation
Added link for UART passthrough

03/31/2017 0.16 Updates made for Yocto

06/02/2017 0.17 Updated for v2017.1

06/05/2017 0.18 Deleted all references to QEMU

06/16/2017 0.19 Various updates to synch up with Yocto changes.

10/09/2017 1.00 Updates for Rev 1.0 support

11/01/2017 1.01 Updates for vXZD_20170601.uz

11/16/2017 1.02 Updates from Medtronic XQS feedback.

11/30/2017 1.03 Fixed typos and edited a few instructions to make it more clear.

02/02/2018 1.04 Updates for Virtuosity_2018

User’s Manual www.dornerworks.com 3
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Date
MM/DD/YYYY

Version Changes

06/15/2018 1.05 Removed step 2 of libvchan example because modules are built into image.
Fixed 7.4.1. formatting.

07/15/2019 1.06 Updated for 2019.1

08/01/2019 1.07 Generic improvements for 2019.1

08/19/2019 1.08 Update subject field to Virtuosity_2019; remove unused section 10; update
how-to guide references.

http://dornerworks.com/

User’s Manual www.dornerworks.com 4
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Table of Contents
Chapter 1 Introduction .. 7

1.1. Introduction to Virtuosity™, Xen Zynq Distribution .. 7

1.1.1. Introduction to Xen and Virtualization ... 7

1.1.2. Benefits of Hypervisors and Virtualization .. 8

1.2. Introduction to the Xilinx Zynq UltraScale+ Multiprocessor System-on-Chip (MPSoC) Platform 11

Chapter 2 Host Setup .. 11
2.1. Release Image ... 11
2.2. Setting up Host OS .. 12

2.2.1. Required Tools .. 12

2.2.2. Required Libraries ... 12

2.3. Installing the Image ... 13
2.4. Setup TFTP Server ... 14

Chapter 3 Target Setup ... 16
3.1. Target Board.. 16

3.1.1. Setting up Dual Partition SD Card ... 16

Chapter 4 Booting and Running XZD .. 18
4.1. Booting the Target .. 18

4.1.1 Booting via SD Card ... 18

4.1.2. Booting via JTAG.. 20

4.2. Running XZD .. 21

4.2.1. Booting a Guest ... 21

4.2.2. Copying a Guest .. 24

4.2.3. Booting Guests with Alternate File Systems ... 26

Chapter 5 Building from Source .. 27
5.1. Environment Setup and Build Process .. 27
5.2. Build Dom0 Linux Kernel, Xen, U-Boot, & FSBL .. 27

5.2.1. Customizing the Image .. 28

5.3. Installing and Using Built Images .. 28
5.4. Creating More Guests ... 29

http://dornerworks.com/

User’s Manual www.dornerworks.com 5
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Chapter 6 Xen on Zynq .. 31
6.1. Xen Boot Process... 31
6.2. xl – Interfacing to Xen ... 31

6.2.1. Listing Domains ... 31

6.2.2. Creating a Guest Domain .. 31

6.2.3. Shutting Down or Destroying a Guest Domain ... 32

6.2.4. Switching Between Domains ... 32

6.3. xentop – Analyzing Domain Resource Utilization ... 32
6.4. Shared Memory .. 34

6.4.1. libvchan ... 34

6.4.2. Example: Using libvchan for Inter-domain Communication ... 35

Chapter 7 Bare Metal Guests .. 38
7.1. Introduction .. 38

7.1.1. Bare Metal Guest Bootup ... 38

7.1.2. Payload Application... 39

7.2. Building the Bare Metal Guest .. 39

7.2.1. Creating Payload Application .. 39

7.2.2. Building the Guest Image .. 40

7.3. Installing and Running the Guest Image in the XZD .. 40

7.3.1. Guest Image .. 40

7.3.2. Guest Configuration .. 41

7.3.3. Running the Guest... 41

7.4. XSDK Example ... 41

Chapter 8 Other Guests ... 44

Chapter 9 Interacting with I/O Devices .. 45
9.1. Paravirtualization .. 45
9.2. Passthrough .. 46

9.2.1. UART Passthrough ... 47

9.2.2. Ethernet Passthrough ... 47

9.2.2.1. Modifying the Xen Device Tree ... 47

9.2.2.2. Modifying the Domain Configuration File ... 49

9.2.2.3. Creating a Partial Device Tree ... 49

9.2.2.4. Communicating with the Domains.. 50

http://dornerworks.com/

User’s Manual www.dornerworks.com 6
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Chapter 10 Additional Support Solutions ... 52
10.1. Current Support Options ... 52

http://dornerworks.com/

User’s Manual www.dornerworks.com 7
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Chapter 1 Introduction

1.1. Introduction to Virtuosity™, Xen Zynq Distribution
The Virtuosity, Xen Zynq Distribution (XZD), is the port of the Xen open source hypervisor to the Xilinx Zynq
UltraScale+ Multi-Processor on a Chip (MPSoC). All components of the XZD except for the Bare Metal
Container (BMC) are released under the GNU General Public License version 2 (GPLv2); the BMC is released
under the FreeBSD license. You are free to make modifications and derivative products for private use without
having to make your source code changes available to others. If you decide to release any modified, or
derivative, components other than the BMC, then the GPLv2 license requires that you make the source code,
including your modifications and additions, available to the users of the modified software. Note that the
software running in the virtualized environments that Xen creates are not a derivative XZD product, and so
therefor are not subject to the GPLv2 licensing requirements. However, such software, or constituent
components thereof such as the Operating System (OS), may be subject to their own licensing restrictions.

1.1.1. Introduction to Xen and Virtualization
Xen is a type-1 hypervisor. Xen can run on Intel x86 and ARM platforms with hypervisor hardware extensions,
which include ARMv8 and some ARMv7 processors. Xen on Intel platforms has an extensive history providing
cloud services. Amazon Web Services alone runs ½ million Xen instances [1]. Work on adding ARM support for
Xen was started in 2008, and was first released in 2013. The release of support for Multicore System on a Chip
(SoC) using the 64-bit ARMv8 architecture extensions occurred in 2015. The year 2016 marked an inflection in
the embedded market similar to one experienced by the server market in the 1990’s, where system designers
begin to struggle with being able to fully utilize the processing power of the silicon, making this market a ripe
opportunity for using virtualization to fully load those chips.

A hypervisor, or Virtual Machine Monitor (VMM), is a software layer
responsible for creating and managing Virtual Machines (VMs), which are
execution environments that to software running in them are, ideally,
indistinguishable from the real thing. Each of these VMs can be used to run
a different guest software stack, from OS to applications. A type-1
hypervisor is the lowest layer of software and runs directly on the hardware
and has full control of the platform’s resources. In contrast, a type-2
hypervisor runs as an application on top of a host OS and can only control
the resources the host OS allows it to.

Xen provides the ability to host multiple operating systems on the same
computing platform. Xen can do this by running each guest in its own VM.
The guest OS interacts with the VM just as it would with real hardware. Xen
creates memory partitions so each VM has its own allocation of RAM that
the other VMs cannot access, unless special permissions are given. Xen also
controls when, for how long, and how many CPU cores a VM uses at any
given time, preventing a guest from consuming all of the processing

http://dornerworks.com/

 Introduction

User’s Manual www.dornerworks.com 8
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

resources. Xen also has control over incoming interrupts, determining when and to which guests those
interrupts are ultimately delivered.

As the lowest layer of software in the system, Xen is the component that bootloaders like U-Boot would boot
into. After initialization, Xen immediately starts up the first VM, known as dom0. dom0 acts as Xen’s proxy and
special agent in the system, it is required for hypervisor operation and startup. Through dom0, system
developers can control VM, launching, pausing, or killing other guests. By default, dom0 has access to all
system resources. Guests other than dom0 are typically referred to as domU.

Xen provides a few different ways to interact with peripheral I/O devices, to best meet the requirements of your
project. See Chapter 8, Other Guests, and Chapter 9, Interacting with I/O Devices for more details.

1.1.2. Benefits of Hypervisors and Virtualization

There are three main categories of reason for using virtualization technologies like Xen on your embedded
project: to reduce cost/schedule, to enable new or improved features, and to reduce project and product risk.
These are potent benefits that can be enjoyed by your project without a recurring license fee. You can even try
it out with no up-front costs to see how Xen-provided virtualization can meet your needs. Best of all,
DornerWorks is ready and able to provide expert advice and support if you decide you need customizations,
additional features, or Xen consultation.

Reduce Cost and Schedule

The primary benefit of using virtualization is that it can reduce the production cost of your product, both in
nonrecurring engineering cost and unit cost, while also helping to reduce schedule. The main way virtualization
lets you accomplish that is by allowing you to combine and consolidate different software components while
still maintaining isolation between them. This feature of virtualization enables many use cases.

One such use case is reducing of size, weight, power, and cost (SWaP-C) by reducing part count. Thanks to
Moore’s law, modern multi-core processors like the ZUS+ are processing powerhouses, often providing more
computation power than needed for a single function. The ability to consolidate while maintaining isolation
allows you to combine software that otherwise might have been deployed on multiple hardware systems or
processors onto a single MPSoC chip. A single hardware platform is also easier to manage than a multi-
platform system.

http://dornerworks.com/

 Introduction

User’s Manual www.dornerworks.com 9
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Consolidation with isolation can also be used to enforce greater decoupling of the software components.
Coupling between software components leads to all kinds of problems with development, integration,
maintenance, and future migrations. This is because coupling leads to dependencies, sometimes implicit or
unknown, between the components such that a change or addition to one software unit often has a wide-
reaching and unexpected ripple effect. Running different software functions in their own VMs leads to very
strong decoupling where any dependencies between software functions are made explicit through
configuration or I/O calls, making it easier to understand and eliminate unintended or unexpected interactions.
Strong decoupling also allows greater freedom to develop the software functions in parallel with a higher
confidence that the different pieces won’t interfere with one another during integration.

As an aside, this level of decoupling is critical in applications needing security or safety certification, as it is a
requirement to show certification authorities that there are no unintended interactions. By restricting and
reducing the amount of intended interaction with strict design decoupling and VM isolation, you can also
reduce re-certification costs by being able to show how changes and additions are bounded to the context of a
particular VM.

Even outside the realm of safety and security considerations, the ability to replace a software function with a
compatible one without having to worry about side effects can result in significant savings. Likewise, you can
rest easy knowing that adding software in a new VM won’t causing existing software functions to fail. It is also
easier to re-use software components developed for one project on another, simply take the VM in which it
runs and deploy it to run as a guest in a different system, allowing a mix’n’match approach with your existing
software IP.

Enable New and Improved Features

The capabilities provided by Xen virtualization can also be used to enable new features and improve old ones.
The isolation capability allows for enhanced security and safety, as it becomes possible to run functions in
isolation, i.e. sandbox them, so that a breach or failure in one VM is limited to that VM alone. Not even security
vulnerabilities in the VM’s OS would result in compromise of functions in another VM, providing defense in
depth.

The capability to consolidate disparate software functions enables the implementation of a centralized
monitoring and management function that operates externally to the software functions being monitored. This
MM function could be used to detect and dynamically respond to breaches and faults, for example, restarting
faulted VMs or terminating compromised VMs before the hacker could exploit it. A centralized monitoring
function could also prove useful in embedded applications which have a greater emphasis on up-time. The
monitoring function could detect or predict when a VM is faulting, or about to fault, and ready a backup VM to
take over with minimal loss of service.

There are other use cases that are common in the server world, where VMs are managed algorithmically by
other programs, being created, copied, migrated, or destroyed in response to predefined stimulus.
Virtualization enables guest migration, where the entire software stack, or part of it, could be moved from one
VM to another, potentially on another platform entirely. This could be an important enabler for self-healing
systems. Migration can help with live system upgrades, where the system operator could patch the OS or
service critical library in a backup copy of the VM then test the patched VM to validate correct operation before
migrating the actively running application to the patched VM, again with a minimal loss of service. Another use
case seen in the server market is the ability to perform load balancing, either by dynamically controlling the

http://dornerworks.com/

 Introduction

User’s Manual www.dornerworks.com 10
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

number of VMs running to meet the current demands, or by migrating VMs to a computing resource closer to
where the processing is actually needed, reducing traffic on the network.

Reduce Program and Product Risk

Virtualization can be used to reduce program risk by providing means to reconcile contradictory requirements.
The most obvious example being the case where two pre-existing applications are needed for a product, but
where each were developed to run on a different RTOS. In this case the contradictory requirements are
regarding the OS to use. Other examples including different safety or security levels, where isolation allows you
to avoid having to develop all of your software to the highest level, or using software functions with different
license agreements.

Long lived programs can also benefit from the ability to add new VMs to the system at a later date, creating a
path for future upgrades. Likewise, in a system using VMs, it becomes easier to migrate to newer hardware,
especially if the hardware supports backward compatibility, like the ARMv8 does for the ARMv7. Even if it isn’t,
thanks to Moore’s law, newer processors will have even greater processing capabilities, and emulation can be
used in an VM to provide the environment necessary to run legacy software.

Virtualization can also be used to reduce risk of system failure during runtime. Previously mentioned was
dynamic load balancing, which can also be considered one way to reduce the risk of failure, but virtualization
can also be used to easily provide redundancy to key functionality by running a second copy of the same VM.
With the centralized monitoring also previously mentioned, the redundant VM can even be kept in a standby
state, and only brought to an active state if data indicates a critical function is experiencing issues or otherwise
about to fail.

[1] http://www.zdnet.com/article/amazon-ec2-cloud-is-made-up-of-almost-half-a-million-linux-servers/

http://dornerworks.com/
http://www.zdnet.com/article/amazon-ec2-cloud-is-made-up-of-almost-half-a-million-linux-servers/

User’s Manual www.dornerworks.com 11
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

1.2. Introduction to the Xilinx Zynq UltraScale+
Multiprocessor System-on-Chip (MPSoC) Platform

The Xilinx Zynq UltraScale+ Multiprocessor System-on-Chip (MPSoC) is a fully featured processing platform.
Xilinx provides an overview of the Zynq UltraScale+ MPSoC here, zynq-ultrascale-mpsoc. The Zynq UltraScale+
MPSoC has many advanced features including a quad core ARM Cortex-A53, a dual core ARM Cortex–R5, the
Mali-400MP2 GPU, and a highly configurable FPGA fabric. For more information on the ARM Cortex-A53,
please visit cortex-a53-processor. The Zynq UltraScale+ MPSoC is capable of running the open source
hypervisor Xen. Details on the Xen hypervisor are located at this web site, xenproject. These features make the
new Zynq UltraScale+ MPSoC a strong choice for embedded applications, including aerospace & defense,
medical, industrial, telecom, and many other application spaces.

Chapter 2 Host Setup

2.1. Release Image
The release image is a compressed TAR archive. The archive contains a prepackaged image that will allow the
engineer to run the Xen hypervisor with a set of prepackaged domains. The figure below illustrates the
contents of the release image with the included components needed to run the development system.

Once the archive is unpackaged, the directory structure will contain the following subfolders and files:

• Virtuosity_2019
o dist

 images
• linux

 project-spec
o docs
o dts
o fs
o misc

 examples
• baremetal

o …
 xzd_bmc

o sdk

http://dornerworks.com/
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
http://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php
http://www.xenproject.org/

 Host Setup

User’s Manual www.dornerworks.com 12
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

2.2. Setting up Host OS
These instructions are intended to be run on an x86_64 Ubuntu 14.04 or 16.04 host. Ensure that the host has at
least 40GB free space.

2.2.1. Required Tools
You will need git, several tools in Ubuntu’s build-essential package, and others to complete this build
process. To install the Ubuntu tools, use the command below:
$ sudo apt-get install -y build-essential git mercurial dos2unix gawk tftpd-hpa flex \
bison unzip screen

You can optionally install Vivado if you need to make modifications to the FPGA or other board devices.
The installation and use of Vivado is outside the scope of this manual and it is left to the user to
understand its requirements and the interactions caused by their changes.

The Xilinx XSDK is required to be installed if you plan to boot the board from JTAG. The rest of this
guide assumes the XSDK is installed to the default location at /opt/Xilinx/. Once the XSDK is correctly
installed, make sure to install the Xilinx device drivers:
$ cd /opt/Xilinx/SDK/2017.3/data/xicom/cable_drivers/lin64/install_script/install_drivers
$ sudo ./install_drivers

2.2.2. Required Libraries
Install these additional libraries prior to the installation of PetaLinux and the XSDK.

Library Ubuntu Package Name

ncurses terminal library ncurses-dev

64-bit Openssl library libssl-dev

64-bit zlib compression library zlib1g-dev

32-bit zlib compression library lib32z1

32-bit GCC support library lib32gcc1

32-bit ncurses lib32ncurses5

32-bit Standard C++ library lib32stdc++6

32-bit selinux library libselinux1:i386

virtual framebuffer xvfb

http://dornerworks.com/

 Host Setup

User’s Manual www.dornerworks.com 13
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

M4 macros for configuration shell scripts autoconf

multipurpose relay for data dransfer socat

generic library support script libtool

compression library zlib1g:i386

Library containing repo phablet-tools

Edit rpath in ELF binaries chrpath

Direct media layer development files Libsdl1.2-dev

Documentation system texinfo

GNU Compiler multilib files gcc-multilib

Development files for glib library Libglib2.0-dev

$ sudo apt-get install -y ncurses-dev lib32z1 lib32gcc1 lib32ncurses5 lib32stdc++6 \
libselinux1:i386 zlib1g-dev libssl-dev xvfb autoconf socat libtool zlib1g:i386 phablet-
tools chrpath libsdl1.2-dev texinfo gcc-multilib libglib2.0-dev

2.3. Installing the Image
There should be at least 10GB of free disk space available to decompress the archive and run the included
scripts. The following setup was tested on an x84_64 PC running native Ubuntu 14.04 or 16.04 with 6 Gb DDR2
Memory, and a Core 2 Quad Q6600 processor.

If a developer wants to install/run the distribution:

1. Copy the release image to an appropriate location on the host system.
Note a typical folder is /opt/Xilinx

2. Open a terminal on the host system.
3. The PetaLinux build environment requires that you link /bin/sh to /bin/bash.

$ cd /bin
$ sudo rm sh
$ sudo ln -s bash sh

4. Close, and reopen your terminal and navigate to the image’s location.
5. Extract the image into the directory with the following command:

$ tar -xvzf Virtuosity_2019.tgz
Note: An appropriate folder to extract the tar into is /opt/Xilinx/Virtuosity_2019/

6. Setup environment variables: $RELEASE_DIR and $BOARD
Note: $BOARD can use either ‘zcu102’ or ‘ultrazed’
$ export RELEASE_DIR=`pwd`/Virtuosity_2019

http://dornerworks.com/

 Host Setup

User’s Manual www.dornerworks.com 14
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

$ export BOARD=zcu102

7. Download petalinux-v2017.3-final-installer.run from the Xilinx Tools website to the $RELEASE_DIR
directory.

8. Once downloaded, the PetaLinux installer must be made executable.
$ cd $RELEASE_DIR
$ chmod +x petalinux-v2017.3-final-installer.run

9. Install PetaLinux by running the following command (This will require accepting a license agreement).
$ sudo mkdir -p /opt/Xilinx
$ sudo chown $USER:$USER /opt/Xilinx
$ mkdir -p /opt/Xilinx
$./petalinux-v2017.3-final-installer.run /opt/Xilinx/petalinux-v2017.3-final

10. Download SDK 2017.3 Web Installer for Linux 64 from the Xilinx Tools website to the $RELEASE_DIR
directory.

11. Install the XSDK in your release directory by running the following command.
$ chmod +x Xilinx_SDK_2017.3_1215_1_Lin64.bin
$./Xilinx_SDK_2017.3_1215_1_Lin64.bin

12. If using the UltraZed Board, you’ll need to manually add the board definition files to the XSDK. Get the
board files and extract the zip file into the appropriate location with the following commands.
$ wget
http://zedboard.org/sites/default/files/documentations/UltraZed_Board_Definition_Files_v201
7_2_Release_All_CC_3.zip
$ unzip UltraZed_Board_Definition_Files_v2017_2_Release_All_CC_3.zip
$ unzip ultrazed_board_definition_files_v2017_2.zip -d
/opt/Xilinx/SDK/2017.3/data/boards/board_files/

13. Once PetaLinux is installed, source the PetaLinux script using the following command.
$ source petalinux-v2017.3-final/settings.sh

Note that the Petalinux installation directory is now exported to environment variable $PETALINUX

14. Create tftpboot folder and install prebuilt binaries using the following commands
$ sudo mkdir -p /tftpboot
$ sudo chmod 777 /tftpboot
$ cp $RELEASE_DIR/dist/images/linux/$BOARD/* /tftpboot/

2.4. Setup TFTP Server
A TFTP server is needed to load images to any target boards.

1. Configure the TFTP server by changing the value of TFTP_DIRECTORY to “/tftpboot” in /etc/default/tftpd-
hpa

2. Restart the TFTP server
$ sudo service tftpd-hpa restart

3. Take note of your IP configuration. Save the values for inet addr, Bcast, and Mask. These will be used in U-
Boot for serverip, gatewayip, and netmask respectively.

http://dornerworks.com/

 Host Setup

User’s Manual www.dornerworks.com 15
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

$ ifconfig

http://dornerworks.com/

 Target Setup

User’s Manual www.dornerworks.com 16
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Chapter 3 Target Setup

3.1. Target Board
This chapter will contain instructions on how to setup an HW-Z1-ZCU102 Revision 1.0 board or an UltraZed
board. See the Evaluation Board Overview document from Xilinx for a block diagram of the board to see where
all the ports are.

1. Connect the power cable.
2. Connect the Ethernet port to your network.
3. Connect the USB UART and, optionally, USB JTAG to your host machine.
4. Power up the board.
5. Populate an SD card.

3.1.1. Setting up Dual Partition SD Card
The following section will create a 256MB FAT partition on a new SD card for the boot files and a second ext4
partition using the remaining space on the card for the extended dom0 root file system. A minimum of a Class
10, 8GB or more SD card is recommended. The host machine is required to initialize and populate the SD card.

1. Insert SD card into host machine.
2. Find the name of the inserted SD card, the last entry should be the newly inserted SD card, in this case it

is /dev/sdb (the SD card may appear as /dev/sd* or /dev/mmcblk*)
$ dmesg

3. The command below will create two partitions on the target SD card. Note: If the command below fails,
delete any partitions that already exist on the SD card and try again.
$ echo -e "n\np\n1\n\n+256M\nt\nc\nn\np\n2\n\n\nt\n2\n83\nw\n" | sudo fdisk /dev/sdb

4. Eject the SD card and then reinsert it, your OS should automatically mount the new partitions.

5. Then format the new partitions as FAT and ext4 and label them “BOOT” and “overlayfs” respectively.
$ sudo mkfs.vfat /dev/sdb1
$ sudo mkfs.ext4 /dev/sdb2
$ sudo fatlabel /dev/sdb1 BOOT
$ sudo e2label /dev/sdb2 overlayfs

6. Create the necessary directories so that the two SD card partitions may be mounted.
$ sudo mkdir /media/$USER/BOOT
$ sudo mkdir /media/$USER/overlayfs

7. Ensure that both partitions are mounted. Note: Ubuntu may have auto-mounted these locations for
you.
$ sudo mount /dev/sdb1 /media/$USER/BOOT
$ sudo mount /dev/sdb2 /media/$USER/overlayfs

http://dornerworks.com/

 Target Setup

User’s Manual www.dornerworks.com 17
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

8. Copy the contents of the dom0 extended file system to the rootfs partition.
$ sudo tar -xvf $RELEASE_DIR/fs/dom0.extfs.tar -C /media/$USER/overlayfs

9. Optional: Generate your own boot files. Skip this step and go to the next if you are going to use the
pre-made boot files.

a. Make the desired changes to zynqmp_fsbl.elf, bl32.elf an/or u-boot.elf. Note: Some
modifications may cause the system to fail to boot, use at your own risk.

b. Create a .bif file with the following contents. Note: .bif files cannot read environment variables,
so PATH and BOARD must be replaced with the necessary environment variables, or navigate to
the directory necessary before running bootgen.

$ > $RELEASE_DIR/${BOARD}_sd_boot.bif
the_ROM_image:
{
 [fsbl_config] a53_x64
 [bootloader] PATH/images/linux/BOARD/zynqmp_fsbl.elf
 [destination_cpu=a53-0, exception_level=el-3, trustzone] PATH/images/linux/BOARD/bl31.elf
 [destination_cpu=a53-0, exception_level=el-2] PATH/images/linux/BOARD/u-boot.elf
}

c. Generate a new boot.bin file using the bootgen utility:
$ /opt/Xilinx/SDK/2017.3/bin/bootgen -image ${BOARD}_sd_boot.bif -arch zynqmp -w -o i
$RELEASE_DIR/dist/images/linux/${BOARD}/boot.bin

10. Copy the files ‘boot.bin’, ‘xen.ub’, ‘xen.dtb’, ‘uboot.env’, and ‘Image’ to the fat partition of the SD card.
$ sudo cp $RELEASE_DIR/dist/images/linux/${BOARD}/{boot.bin,xen.ub,xen.dtb,Image,uboot.env}
/media/$USER/BOOT

11. Unmount the SD card and remove the mount directories:
$ sudo umount /dev/sdb1
$ sudo umount /dev/sdb2
$ sudo rm -rf /media/$USER/BOOT /media/$USER/overlayfs

http://dornerworks.com/

User’s Manual www.dornerworks.com 18
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Chapter 4 Booting and Running XZD

4.1. Booting the Target

4.1.1 Booting via SD Card

4.1.1.1 Configure ZCU102 Boot Mode Switches
See the board’s User Guide from Xilinx for a diagram of the board for help locating Boot Mode switches and
ports. The ZCU102 Evaluation Board User Guide is available from Xilinx as UG1182.

1. Set the DIP switch SW6 boot mode pins to 0b1110 (off,off,off,on).

Boot Mode DIP Switch SW6 on ZCU102 Board

4.1.1.2 Configure UltraZed Boot Mode Switches
See the board’s Hardware User Guide from Avnet for a diagram of the board for help locating Boot Mode
switches and ports. The UltraZed – EG SOM Hardware User Guide is available from Avnet as 5264-UG-AES-
ZU3EGES-1-SOM-G-v1-1-V1.

1. Set the DIP switch SW6 boot mode pins to 0b0101 (off,on,off,on).

http://dornerworks.com/

 Booting and Running XZD

User’s Manual www.dornerworks.com 19
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Boot Mode DIP Switch Table/Diagram from UltraZed – EG SOM Hardware User Guide

4.1.1.3 Connect UART and Boot
1. Insert the SD card, connect to UART, and power on the board.

The ZCU102 board has a Cygnal/Silabs CP2108 Quad USB to UART adapter, and Linux creates four
/dev/ttyUSB* devices in an unpredictable order. Here's a bash script that will automatically grab the
correct device:
#!/bin/bash
Looks up the Cygnal/Silabs usb-to-uart converter by VID/PID, grabs the first of the four
ports (:1.0) and echoes the device name
echo /dev/$(echo $(grep '10c4/ea71' /sys/bus/usb-serial/devices/ttyUSB*/../uevent | tail -n
1 | sed 's/uevent\:.*$//g')../*\:1.0/ttyUSB* | gawk -F "/" '{print $NF}')

The UltraZed board has a Dual USB to UART adapter, and Linux seems to handle it somewhat more
predictably. UART0 shows up as /dev/ttyUSB1 and UART1 shows up as /dev/ttyUSB0. You’ll want to
use UART0 for the boot logs and login console.

Once the correct device is known, the following command will open a serial port connection in the
terminal:

$ sudo screen /dev/ttyUSB# 115200

http://dornerworks.com/

 Booting and Running XZD

User’s Manual www.dornerworks.com 20
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Substituting /dev/ttyUSB# with the correct device found using the script above. For example:

$ sudo screen /dev/ttyUSB0 115200

2. If the U-boot environment provided with the XZD release is not being used, you will need to interrupt
the startup sequence and enter the boot commands manually:
ZynqMP> setenv fdt_addr 0x280000
ZynqMP> setenv fdt_high 0xffffffffffffffff
ZynqMP> saveenv
ZynqMP> fatload mmc 0:1 $fdt_addr xen.dtb
ZynqMP> fdt addr $fdt_addr
ZynqMP> fdt resize 1024
ZynqMP> fatload mmc 0:1 0x300000 Image
ZynqMP> fdt set /chosen/dom0 reg <0 0x300000 0x$filesize>
ZynqMP> fatload mmc 0:1 0x80000 xen.ub
ZynqMP> bootm 0x80000 - $fdt_addr

For UltraZed, substitute mmc 0:1 with mmc 1:1.

4.1.2. Booting via JTAG
As an alternative to booting the board with all the boot files on a second partition of the SD card, the board
can be booted with using U-Boot and FSBL from the host PC. This section is an alternative to 4.1.1. As with the
previous section, a minimum of a Class 10, SD card with a capacity of at least 8GB is recommended. See the
target board’s Overview document from Xilinx for a block diagram of the board to see where all the ports are.

1. Set the Boot Mode to JTAG Boot.
The ZCU102 does this by setting DIP switch SW6 boot mode pins to 0b0000 (on, on, on, on).
The UltraZed does this by setting DIP switch SW2 boot mode pins to 0b1111 (on, on, on, on).

2. Connect the Ethernet port to your network and the USB UART and USB JTAG ports to your host machine.

3. Connect the power cord.

4. Populate your SD card. This only needs to be done when a change is made to the file system.

a. Insert your SD card into your host machine.

b. Figure out which device the SD card shows up as. It should be the last device that shows up.
$ dmesg

c. Mount the rootfs file system by following the process laid out in 3.1.1 steps 3 through 11

d. Unmount SD card and place it back in the board.

5. Install the device tree blob for the board
$ cp $RELEASE_DIR/dist/images/linux/$BOARD/xen.dtb /tftpboot/xen.dtb

6. In a new terminal, connect to the board UART, assuming the device is mounted to /dev/ttyUSB2
$ sudo screen /dev/ttyUSB2 115200

7. Start the board using the power switch
8. In the other terminal, connect to the jtag, load boot images, and run them

http://dornerworks.com/

 Booting and Running XZD

User’s Manual www.dornerworks.com 21
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

$ cd $RELEASE_DIR/dist
$ /opt/Xilinx/SDK/2017.3/bin/xsdb dist_zcu102_boot.tcl

9. In the screen terminal, stop the U-Boot autoboot and set the following environment variables from the
TFTP network values from section 2.4 and use an open IP address on your network for ipaddr:
ZynqMP> setenv serverip xxx.xx.xxx.xxx
ZynqMP> setenv gatewayip xxx.xx.xxx.xxx
ZynqMP> setenv netmask xxx.xx.xxx.xxx
ZynqMP> setenv ipaddr xxx.xx.xxx.xxx
ZynqMP> run xen

10. Log into the system using root/root as the username and password.

4.2. Running XZD
The following sections explain how to do some very basic domain management on Xen.

4.2.1. Booting a Guest
To test that Xen is running and display diagnostic information, use the ‘xl info’ command. The expected output
is shown on the following page.

http://dornerworks.com/

 Booting and Running XZD

User’s Manual www.dornerworks.com 22
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

[root@xilinx-dom0 ~]# xl info
host : xilinx-dom0
release : 4.4.0
version : #3 SMP Wed Jun 15 12:01:36 EDT 2016
machine : aarch64
nr_cpus : 4
max_cpu_id : 127
nr_nodes : 1
cores_per_socket : 1
threads_per_core : 1
cpu_mhz : 50
hw_caps : 00000000:00000000:00000000:00000000:00000000:00000000:00000000:00000000
virt_caps :
total_memory : 4096
free_memory : 3038
sharing_freed_memory : 0
sharing_used_memory : 0
outstanding_claims : 0
free_cpus : 0
xen_major : 4
xen_minor : 7
xen_extra : .0-rc
xen_version : 4.7.0-rc
xen_caps : xen-3.0-aarch64 xen-3.0-armv7l
xen_scheduler : credit
xen_pagesize : 4096
platform_params : virt_start=0x200000
xen_changeset : Tue Feb 2 14:24:02 2016 -0500 git:398c245
xen_commandline : console=dtuart dtuart=serial0 dom0_mem=512M bootscrub=0 dom0_vcpus_pin
maxcpus=3 timer_slop=0
cc_compiler : aarch64-linux-gnu-gcc (crosstool-NG linaro-1.13.1-4.9-2014.09 -
cc_compile_by : robertvanvossen
cc_compile_domain :
cc_compile_date : Wed Jun 15 12:00:58 EDT 2016
build_id : ccd4c633e7094b77493d12feda5aff138fe5b677
xend_config_format : 4

If Xen is not properly installed or running, you will receive an error similar to:
xl: command not found

Please re-extract the release image, and try again.

To view the list of running domains, use the ‘xl list’ command
xl list

Output:
Name ID Mem VCPUs State Time(s)
dom0 0 512 1 r----- 133.4

The following necessary components for your first guest have already been created and stored in dom0’s file
system:

Guest Linux Kernel, found at /root/Dom1-Kernel
Guest File System Image, found at /root/Dom1.img
Guest Domain Configuration, found at /etc/xen/dom1.cfg

http://dornerworks.com/

 Booting and Running XZD

User’s Manual www.dornerworks.com 23
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Staying in the terminal, we will prepare to run a guest domain. The additional domain is already included in the
archive we have been working with and will now prepare to run it on the Xen hypervisor. To do that type the
following commands in dom0’s console:

1. Mount the guest’s file system to a loop device in domain 0.
losetup /dev/loop0 /root/Dom1.img

You should receive no output if the command succeeds.

2. Boot another domain (dom1), and connect to its console
xl create -c /etc/xen/dom1.cfg

The -c flag will automatically attach dom1’s console. That is, once this command is executed, you will be
logging into dom1.

3. Try the following at the dom1 command prompt

Since your guest is not a privileged domain, typing ‘xl info’ will output less detailed information, and ‘xl
list’ will generate an error as it can only be run in dom0.
[root@xilinx-dom1 ~]# xl info
host : xilinx-dom1
release : 4.4.0
version : #3 SMP Wed Jun 15 12:01:36 EDT 2016
machine : aarch64
libxl: error: libxl.c:5183:libxl_get_physinfo: getting physinfo: Operation not permitted
libxl_physinfo failed.
libxl: error: libxl.c:5752:libxl_get_scheduler: getting current scheduler id: Operation not
permitted
get_scheduler sysctl failed.
xend_config_format : 4

[root@xilinx-dom1 ~]# xl list

Output:
libxl: error: libxl.c:670:libxl_list_domain: getting domain info list: Operation not
permitted
libxl_list_domain failed.

The system is now running Xen and two domains or virtual machines: dom0 and dom1.

If you want to return to dom0’s console while leaving the guest running, you may press CTRL-]. This will
close the internal console connection, and bring dom0 back into focus within the terminal window.

To reconnect to a guest terminal, use the “xl console” command
[root@xilinx-dom0 ~]# xl console dom1

It is important that you are aware which guest you are issuing commands to. Pay careful attention to
the hostname listed in the terminal:
[root@xilinx-dom0 ~]# dom0
[root@xilinx-dom1 ~]# dom1

http://dornerworks.com/

 Booting and Running XZD

User’s Manual www.dornerworks.com 24
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

4.2.2. Copying a Guest
Both dom0 (control) and dom1 (guest) are included in the archive. You can easily boot a second guest
domain, for a total of three domains including dom0, by making copies of dom1’s components.

1. Make sure that domain 1 is powered down before we copy its kernel and file system.
[root@xilinx-dom0 ~]# xl console dom1
[root@xilinx-dom1 ~]# poweroff

The guest will shutdown, and the system should return to domain0’s console automatically.

Make sure that the guest is completely shutdown by using the ‘xl list’ command. Dom1 should NOT
have an entry. If you do see an entry for dom1, then this means that dom1 is still shutting down. Wait
for approximately 15 or 20 seconds and try the command again. The results should appear similar to
the below output.
[root@xilinx-dom0 ~]# xl list

Output:
Name ID Mem VCPUs State Time(s)
dom0 0 512 1 r----- 259.7

2. Copy the dom1 FS image.
[root@xilinx-dom0 ~]# cp /root/Dom1.img /root/Dom2.img

This file is 1Gb, and will take a while to copy on the emulated SATA device.

3. Copy the dom1 kernel.
[root@xilinx-dom0 ~]# cp /root/Dom1-Kernel /root/Dom2-Kernel

4. Copy the dom1 configuration file.
[root@xilinx-dom0 ~]# cp /etc/xen/dom1.cfg /etc/xen/dom2.cfg

5. Edit the new dom2 configuration file.

You will need to:
a. Rename the guest to be named “dom2”.
b. Configure the guest to boot domain 2’s kernel.
c. Change the targeted loop device to allow two domains to run simultaneously.

You can accomplish this change using vi or sed expressions.
[root@xilinx-dom0 ~]# vi /etc/xen/dom2.cfg

or
[root@xilinx-dom0 ~]# sed -i 's/om1/om2/' /etc/xen/dom2.cfg
[root@xilinx-dom0 ~]# sed -i 's/loop0/loop1/' /etc/xen/dom2.cfg

6. Verify that the changes have been made to the appropriate files.
[root@xilinx-dom0 ~]# cat /etc/xen/dom2.cfg

===
Example PV Linux guest configuration
===

...

http://dornerworks.com/

 Booting and Running XZD

User’s Manual www.dornerworks.com 25
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Guest name
name = "dom2"

...

Kernel image to boot
kernel = "/root/Dom2-Kernel"

...

Disk Devices
A list of `diskspec' entries as described in
docs/misc/xl-disk-configuration.txt
disk = ['phy:/dev/loop1,xvda,w']

7. Mount the guest file systems to their respective loop devices in domain 0. The losetup command
creates a device on which we can mount the file systems created.
If you have already mounted /root/Dom1.img to /dev/loop0,
there is no need to mount it again
[root@xilinx-dom0 ~]# losetup /dev/loop0 /root/Dom1.img
The dom2 file system hasn’t been mounted yet:
[root@xilinx-dom0 ~]# losetup /dev/loop1 /root/Dom2.img

8. Start the domains (or virtual machines) with the following commands.
[root@xilinx-dom0 ~]# xl create /etc/xen/dom1.cfg

When you leave the -c flag off of the domain creation command, you will receive the guests initial boot
messages to dom0’s standard out, while also keeping dom0’s console in focus.

This chatter does not affect your standard input however it does make it a bit hard to type the next
command. You might want to wait before issuing the next command. The last message should look
similar to the below output (the ‘3’ in the vif3.0 output is variable).
...
xenbr0: port 2(vif3.0) entered forwarding state
xenbr0: port 2(vif3.0) entered forwarding state
xenbr0: port 2(vif3.0) entered forwarding state

Hit enter to bring up a new line in the console, indicating your hostname. Make sure you are still in
dom0’s console, and that you didn’t attach to the guest.
[root@xilinx-dom0 ~]#
[root@xilinx-dom0 ~]# xl create /etc/xen/dom2.cfg

You should see similar console chatter from dom2 booting as it reports to standard out.

The ‘xl list’ command will now show all three domains running. The ID values are sequential and will increase
each time a domain is created. The ID numbers here might look different in your output.
[root@xilinx-dom0 ~]# xl list

Name ID Mem VCPUs State Time(s)

http://dornerworks.com/

 Booting and Running XZD

User’s Manual www.dornerworks.com 26
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

dom0 0 512 1 r----- 378.0
dom1 1 128 1 -b---- 67.8
dom2 2 128 1 -b---- 46.5

Guest domains should be shutdown carefully, as their file systems are easily corrupted if they are reset
improperly or shutdown in the middle of an IO operation. There are two methods to shut down a guest:

From domain0, you can request the Xen Kernel to send a shutdown signal to a guest:
[root@xilinx-dom0 ~]# xl shutdown dom1

You could also attach to dom1’s console by executing the command “xl console dom1” and execute the
poweroff command:
To attach to dom1’s console
[root@xilinx-dom0 ~]# xl console dom1
While in dom1
[root@xilinx-dom1 ~]# poweroff

The poweroff command will function as expected within dom0’s console as well, but you should make sure that
all domains are properly shutdown before doing so.
[root@xilinx-dom0 ~]# poweroff

4.2.3. Booting Guests with Alternate File Systems
Two alternate guest file systems and matching Xen configuration files have also been provided, these are the
Ubuntu Core file system and the Linaro flavored OpenEmbedded file system. Their images can be mounted
and the guests booted using commands similar to those found in 4.2.1:

For the Ubuntu Core FS:

1. Mount the guest’s file system to a loop device in domain 0.
losetup /dev/loop1 /root/ubuntu-core-fs.img

2. Boot another domain, and connect to its console
xl create -c /etc/xen/ubuntu-core-fs.cfg

For the Linaro OpenEmbedded FS:

1. Mount the guest’s file system to a loop device in domain 0.
losetup /dev/loop2 /root/linaro-openembedded-fs.img

2. Boot another domain, and connect to its console
xl create -c /etc/xen/linaro-openembedded-fs.cfg

You can perform all of the same operations with these guests as described in 4.2.1 and 4.2.2.

http://dornerworks.com/

 Building from Source

User’s Manual www.dornerworks.com 27
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Chapter 5 Building from Source

5.1. Environment Setup and Build Process
If you have not executed the steps in section 2.3, in a terminal, set RELEASE_DIR to the directory path where the
archive was decompressed. This variable will be used in several instructions so that you may copy-paste them.
$ export RELEASE_DIR=`pwd`/Virtuosity_2019

5.2. Build Dom0 Linux Kernel, Xen, U-Boot, & FSBL
The following instructions assume that you are using the provided Yocto binaries.

TIP: If you have not yet setup your host, please follow the steps in Chapter 2.

1. Clone the Yocto source and create the default configuration file for the dom0 FS.
$ cd $RELEASE_DIR
$ mkdir Xocto
$ cd Xocto
$ repo init -u git://github.com/dornerworks/xzd-yocto-manifests.git -m xzd.xml -b
XZD_20190808
$ repo sync

2. Setup the Yocto environment
$ source setupsdk

3. Configure Yocto to target the correct tool chain.
Open ‘conf/local.conf’ in an editor, then update Xilinx tool options to point at your SDK or Petalinux
installation. Replace {BOARD} with the value of ${BOARD}.
MACHINE = “{BOARD}-zynqmp”
XILINX_VER_MAIN = “2017.3”
EXTERNAL_TOOLCHAIN_zynq = “/opt/Xilinx/SDK/2017.3/gnu/aarch32/lin/gcc-arm-linux-gnueabi”
EXTERNAL_TOOLCHAIN_microblaze =
“/opt/Xilinx/SDK/2017.3/gnu/microblaze/linux_toolchain/lin64_le”
EXTERNAL_TOOLCHAIN_aarch64 = “/opt/Xilinx/SDK/2017.3/gnu/aarch64/lin/aarch64-linux”
XILINX_SDK_TOOLCHAIN = “/opt/Xilinx/SDK/2017.3”

4. Optional: The default Linux kernel configuration will be sufficient to run as the dom0 kernel for this
exercise. You can use the following command to enable or disable kernel options as desired, but any
configuration changes made will not be permanent unless added to the Yocto recipe.
$ bitbake -c menuconfig linux-xlnx

http://dornerworks.com/

 Building from Source

User’s Manual www.dornerworks.com 28
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Added kernel configurations are beyond the scope of this document and are the responsibility of the
user to understand their interactions and consequences if used.

5. Build the XZD image.
$ bitbake xzd-image-minimal

Depending on computer and network speeds this step can take over 2 hours. You may occasionally see
a failure duiring a compile step, these can be caused intermittent connections and/or parallelzation
issues on systems using multicore processors. In some cases it may be necessary to repeat this
command 4 or 5 times before it will succeed.

6. View the files just created by Yocto in the ‘Xocto/build/tmp/deploy/images/${BOARD}-zynqmp’
directory
$ ls $RELEASE_DIR/Xocto/build/tmp/deploy/images/${BOARD}-zynqmp

5.2.1. Customizing the Image
Refer to the Yocto Documentation for image customization.

http://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html

5.3. Installing and Using Built Images
1. Setup a two partition SD according to the instructions in section 3.1.1 steps 1 through 10.

2. Copy the files ‘BOOT.bin’, ‘xen.ub’, ‘xen.dtb’, ‘uboot.env’, and ‘Image’ to the fat partition of the SD card.
$ sudo cp $RELEASE_DIR/Xocto/build/tmp/deploy/images/${BOARD}-zynqmp/boot.bin
/media/$USER/BOOT/
$ sudo cp $RELEASE_DIR/Xocto/build/tmp/deploy/images/${BOARD}-zynqmp/xen.ub
/media/$USER/BOOT/
$ sudo cp $RELEASE_DIR/Xocto/build/tmp/deploy/images/${BOARD}-zynqmp/xen.dtb
/media/$USER/BOOT/
$ sudo cp $RELEASE_DIR/Xocto/build/tmp/deploy/images/${BOARD}-zynqmp/Image
/media/$USER/BOOT/
$ sudo cp $RELEASE_DIR/dist/images/linux/${BOARD}/uboot.env /media/$USER/BOOT/

3. Create the overlay directory and add any additional files into the locations you need them on the EXT4
partition. The example below will place a copy of the dom0 Linux kernel generated by Yocto into to the
root directory which can be used as a basis for any number of Linux domUs.
$ mkdir /media/$USER/overlayfs/overlay
$ mkdir /media/$USER/overlayfs/overlay/root
$ cp $RELEASE_DIR/Xocto/build/tmp/deploy/images/${BOARD}-zynqmp/Image
/media/$USER/rootfs/overlay/root/Dom1-Kernel

4. Unmount your SD card. Follow the steps in section 4.1.1 to boot your built system from the SD card

5. Once at the dom0 prompt, you can use the following commands to start a domU.

Use a text editor to create a configuration file with the following contents for your domain in ‘/etc/xen/`:
===
Example PV Linux guest configuration

http://dornerworks.com/
http://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html

 Building from Source

User’s Manual www.dornerworks.com 29
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

===

This is a fairly minimal example of what is required for a
Paravirtualised Linux guest. For a more complete guide see xl.cfg(5)

Guest name
name = "dom1"

Kernel image to boot
kernel = "/root/Dom1-Kernel"

Kernel command line options
extra = "console=hvc0 earlyprintk=xenboot root=/dev/loop0 rw"

Initial memory allocation (MB)
memory = 512

Number of VCPUS
vcpus = 1

Network devices
A list of 'vifspec' entries as described in
docs/misc/xl-network-configuration.markdown
vif = ['bridge=xenbr0']

Now use this configuration file to start the new domain:
[root@xilinx-dom0 ~]# xl create /etc/xen/dom1.cfg -c

TIP: There are times when the domain is created in a paused state. To correct
this problem, enter the following commands below:
[root@xilinx-dom0 ~]# xl unpause dom1
[root@xilinx-dom0 ~]# xl console dom1

6. Verify that the new domain is running.
[root@xilinx-dom0 ~]# xl list
Name ID Mem VCPUs State Time(s)
dom0 0 512 1 r----- 36.7
dom1 1 128 1 -b---- 10.3

5.4. Creating More Guests
The file systems and Linux kernels are built by Yocto in section 5.2. It is no longer necessary to build the
guest domain file systems and guest domain kernel individually. Refer to section 5.2.1 for customization of
the file system image.

If you would like to create an additional guest that has a different command prompt name, simply open
‘conf/local.conf’ in an editor, then add the option below with your desired <hostname>:

http://dornerworks.com/

 Building from Source

User’s Manual www.dornerworks.com 30
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

hostname_pn-base-files = "<hostname>”

Then re-run the build steps above in 5.2 step 5 to regenerate the file system with the new hostname.

http://dornerworks.com/

 Xen on Zynq

User’s Manual www.dornerworks.com 31
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Chapter 6 Xen on Zynq

6.1. Xen Boot Process
Running Xen requires booting two kernels: the Xen kernel and the dom0 (or control) kernel, which at this point
is a Linux kernel. Both kernels are loaded into the proper memory locations by the boot loader. Once the boot
loader has finished the initialization of the system, it passes control of the boot process over to Xen.

Xen then performs some additional hardware initialization such as initializing the Zynq hardware so that Xen
can map and handle requests from the device drivers used by the dom0 kernel. More details on the Xen boot
process can be found on the Xen Wiki (http://www.xenproject.org/help/wiki.html).

Once Xen performs its initialization, it then loads the dom0 (usually Linux) kernel and the RAM disk into
memory. The dom0 kernel is then booted by Xen inside the privileged virtual machine domain; from the
perspective of the kernel and the user this boot process is identical to Linux booting directly on the system
hardware. Once dom0 has booted, access to Xen can be configured for each unprivileged domain via the dom0
interface to Xen. dom0 has special privileges allowing it to perform this configuration, among them being the
ability to access the system hardware directly. It also runs the Xen management toolstack, briefly described
below.

6.2. xl – Interfacing to Xen
xl provides an interface to interact with Xen. It is the standard Xen project supported toolstack provided
with the Xen hypervisor for virtual machine configuration, management, and debugging.

6.2.1. Listing Domains
‘xl list’ is used to list the running domains and their states on the system.
xl list

Output:
Name ID Mem VCPUs State Time(s)
Domain-0 0 2048 2 r----- 32.0
dom1 1 1024 2 r----- 7.3

6.2.2. Creating a Guest Domain
The following command will start a new domain using the provided configuration file argument. The
name of the domain is determined by the value set in the configuration file.
xl create -c /etc/xen/dom1.cfg

http://dornerworks.com/
http://www.xenproject.org/help/wiki.html

 Xen on Zynq

User’s Manual www.dornerworks.com 32
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

6.2.3. Shutting Down or Destroying a Guest Domain
‘xl shutdown’ is the command that should be used to shut down a running guest domain on the system.
It performs a graceful shutdown of the domain using the built-in shutdown features of the domain’s
operating system, allowing the domains files system to close safely, and releasing any hardware
resources (RAM, CPU Time, etc.) back to the system.
xl shutdown dom1

The ‘xl destroy’ command should only be used as a last resort on unresponsive domains that are not
removed when given the ‘xl shutdown’ command. The destroy command does not perform a graceful
shutdown and potentially could corrupt the guest domain’s file system as well as any I/O devices to
which the domain has been given access.
xl destroy dom1

6.2.4. Switching Between Domains
To access the command-line interface of a running domain, use the following command:
xl console <domain-name>

where <domain-name> is the name of the specific domain of interest (the names of all running
domains can be viewed using the `xl list` command detailed above).

To return to the dom0 command-line interface, press the key combination: CTRL-].

6.3. xentop – Analyzing Domain Resource Utilization
xentop is part of the Xen tools and is located on the privileged domain, dom0. It can be used to analyze
the performance of the various domains present on the system.

The default xentop display gives you some basic stats on the overall system such as number of
domains, domain state, total memory, memory being used, CPU core count and speed, and Xen version
number. It also provides some similar domain specific information like CPU usage and memory usage,
network utilization (if using the default para-virtualized network bridge), and physical CPU (pCPU) usage
per domain virtual CPU (vCPU).

To start xentop issue the following command in the dom0 terminal
xentop

xentop also accepts several command line arguments that can alter is behavior and the information that
is displays. Those command line arguments are as follows:

-h, --help
Show the help message and exit

-V, --version
Show version information and exit

-d, --delay=SECONDS

http://dornerworks.com/

 Xen on Zynq

User’s Manual www.dornerworks.com 33
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Sets the number of seconds between updates (default 3)

-n, --networks
Displays network information in xentop console

-x, --vbds
Show virtual block device usage data

-r, --repeat-header
Repeat table header before each domain in the list

-v, --vcpus
Shows each vCPU’s execution time in seconds below its assigned domain

-f, --full-name
Forces xentop to output the full domain name (default is truncated)

-b, --batch
Redirects xentop output data to stdout (batch mode)

-i, --iterations=ITERATIONS
Sets the maximum number of metric updates that xentop should produce before ending
Following is an example of the xentop console with no additional commandline arguments:

In addition to the commandline arguments, the display of xentop can be changed while it is running by
pressing the following letters (also displayed in the menu at the bottom of the xentop console):

D – Prompts you to set the delay, in seconds, between performance metric updates

N - Toggles display of network information for each domain. Example:

B – Toggles display of virtual block device information for each domain. Example:

http://dornerworks.com/

 Xen on Zynq

User’s Manual www.dornerworks.com 34
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

V - Toggles display of vCPU run time in seconds. Example of a domain with 2 vCPUs (0 and 1):

R - Toggles printing the table headers before each domain listing. Example:

S – Cycles through which table header to use for sorting (default is to sort by domain name)

Arrow Keys - Scroll through the domain display

Q, Esc – Quit xentop

6.4. Shared Memory
The Xen Project Hypervisor uses what it calls “grant tables” to provide a generic mechanism for memory
sharing between domains. This shared memory interface is used to implement several Xen features, including
PV (split) drivers for various I/O such as block devices and network interface cards.

Each domain has its own grant table. This is a data structure that is shared with Xen (via xenstore) and allows
the domain to communicate to Xen what permissions other domains have on its memory pages. Entries in the
grant table are identified by grant references. A grant reference acts as a “capability” which the grantee (client)
can use to perform operations on the granter’s (server’s) memory.

This capability-based system allows shared-memory communications between unprivileged domains. A grant
reference also encapsulates the details of a shared page, removing the need for a domain to know the real
machine address of a page it is sharing.

6.4.1. libvchan
The virtual channel library or libvchan, included with Xen since version 4.2, is designed to make it easier
to setup a shared memory ring between two guest domains. This implementation of shared memory
uses Xen grant tables and event channels to provide options for both streaming-based communication
and packet-based communication. Even if your application requires a different communication
implementation than those provided, libvchan serves as a good example of how to setup a robust
interdomain communications method.

http://dornerworks.com/

 Xen on Zynq

User’s Manual www.dornerworks.com 35
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

As mentioned above, libvchan relies on grant table and event channel drivers. Therefore you will need
to make sure you have a kernel in each guest domain with the appropriate xenstore, grant table and
event channel drivers enabled including: gntdev, gntalloc and evtchn. All of these drivers are already
enabled in the default Dom1-Kernel included with XZD.

Shared memory communication using libvchan involves a server that grants access and a client that
makes use of the granted access. The server offers the memory used for communication, and advertises
its grant references and event channel information via xenstore. The client must know the server’s
domain id and service path so that it can then obtain the server’s information from the xenstore. Using
this information, the client then maps the server’s shared memory pages into an identically sized
memory buffer in its own virtual address space. The two domains can now begin to communicate with
one another.

The server and client each have their own separate dedicated ring buffer for writes. This avoids any
race conditions during concurrent writes. The server reads from client’s ring buffer and vice versa. The
credentials for each ring is stored in a shared data control structure.

Shared memory size is based on page granularity. libvchan allows users to specify the size of the ring,
which is bounded by the grant table size limit configured for each domain. The server and client can
also be configured to have blocking or non-blocking behavior.

TIP: More specific documentation can be found in the libvchan library code located here:
https://github.com/dornerworks/xen/tree/dw-v2017.3/tools/libvchan. The example
programs used in 6.4.2 are built by the Makefile in that folder as well.

6.4.2. Example: Using libvchan for Inter-domain Communication

TIP: This example assumes you have completed the steps in Chapter 3 and Chapter 4
and have booted either a QEMU setup or the setup described in Chapter 3 and Chapter
4. If you have not completed these steps, please do so before continuing.

This section will walk you through setting up and using a basic program that utilizes libvchan to send
character strings between two domains. This example makes use of several Xen libvchan example
programs which are already included in the XZD filesystem.

To run the example boot into Xen, per section 4.1, and start up dom1 according the instructions in
section 4.2.1. We will be using the program “vchan-node1” located in the /root/libvchan-example
folder to allow dom1 to receive libvchan messages from dom0. Please use the following steps:

1. Open the dom1 console:
root@xilinx-dom0:~# xl console dom1

2. Change into the libvchan-example directory:
root@zcu102-zynqmp:~# cd /root/libvchan-example

http://dornerworks.com/
https://github.com/dornerworks/xen/tree/dw-v2017.1/tools/libvchan

 Xen on Zynq

User’s Manual www.dornerworks.com 36
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

3. Next, execute the vchan-node1 program in server mode, and tell it to read from dom0
root@zcu102-zynqmp:/root/libvchan-example# ./vchan-node1 server read 0 data/vchan

4. Use the keyboard shortcut Ctrl +] to return to the dom0 console, then enter the libvchan-
example directory located there
root@xilinx-dom0:~# cd /root/libvchan-example

5. Look up the domain ID for dom1 using the following command
root@xilinx-dom0:/root/libvchan-example# xl domid dom1

6. We can now pass that ID as a commandline parameter to the vchan-node1 program in order to
write a message to dom1. Fill in the domid reported in the previous step for ${domid} in the
two locations in the command below
root@xilinx-dom0:/root/libvchan-example# ./vchan-node1 client write ${domid} \
/local/domain/${domid}/data/vchan

7. Now we can type a message to dom1 and press return to send it
#Hello dom1, this is dom0!
#

8. Now press Ctrl + C to end the program and switch back to the dom1 console to verify the
message was received in dom1
root@xilinx-dom0:/root/libvchan-example# xl console dom1

If everything worked correctly, you will the message you typed in dom0 has appeared on the
dom1 console. Below is an example run through with all the associated output:
root@xilinx-dom0:~# xl create /etc/xen/dom1.cfg
Parsing config from /etc/xen/dom1.cfg
(XEN) Physical Timer Value (D1): 4086042332
[33.173921] PLL: enable
(XEN) eemi: fn=19 No access to MMIO write fd1a0074
(XEN) eemi: fn=19 No access to MMIO write fd1a0074
[33.179844] PLL: shutdown
[33.344590] PLL: enable
(XEN) eemi: fn=19 No access to MMIO write fd1a0074
(XEN) eemi: fn=19 No access to MMIO write fd1a0074
[33.350517] PLL: shutdown
[33.419744] xenbr0: port 2(vif1.0) entered blocking state
[33.419798] xenbr0: port 2(vif1.0) entered disabled state
[33.425215] device vif1.0 entered promiscuous mode
[33.431835] IPv6: ADDRCONF(NETDEV_UP): vif1.0: link is not ready
root@xilinx-dom0:~# (XEN) d1v0: vGICD: unhandled word write 0xffffffff to ICACTIVER0
[36.915935] xen-blkback: backend/vbd/1/51712: using 1 queues, protocol 1 (arm-abi)
persistent grants
[37.045678] vif vif-1-0 vif1.0: Guest Rx ready
[37.045788] IPv6: ADDRCONF(NETDEV_CHANGE): vif1.0: link becomes ready
[37.051176] xenbr0: port 2(vif1.0) entered blocking state
[37.056534] xenbr0: port 2(vif1.0) entered forwarding state
(XEN) mm.c:1302:d0v0 gnttab_mark_dirty not implemented yet

root@xilinx-dom0:~# xl console dom1
[0.000000] Booting Linux on physical CPU 0x0
.

http://dornerworks.com/

 Xen on Zynq

User’s Manual www.dornerworks.com 37
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

.

.
[4.363443] udevd[1429]: starting eudev-3.2

root@zcu102-zynqmp:~# modprobe xen-gntalloc
root@zcu102-zynqmp:~# modprobe xen-gntdev
root@zcu102-zynqmp:~# cd /root/libvchan-example/
root@zcu102-zynqmp:/root/libvchan-example# ./vchan-node1 server read 0 data/vchan
seed= 1507555061
Press Ctrl +]
root@xilinx-dom0:~# xl domid dom1
1
root@xilinx-dom0:~# cd /root/libvchan-example
root@xilinx-dom0:/root/libvchan-example# ./vchan-node1 client write 1 \
/local/domain/1/data/vchan
seed=1507555418xl con
Hello dom1, this is dom0!
#^C
root@xilinx-dom0:/root/libvchan-example# xl console dom1
#Hello dom1, this is dom0!
^C
root@zcu102-zynqmp:/root/libvchan-example#

http://dornerworks.com/

User’s Manual www.dornerworks.com 38
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Chapter 7 Bare Metal Guests

7.1. Introduction
In order to simplify the process of porting a "standalone" application, one that runs on bare metal without an
operating system, to run as a Xen guest, DornerWorks has developed a Bare Metal Container (BMC). The BMC
provides the libraries and tools for allowing bare metal applications developed using other tool flows, such as
Xilinx's SDK (XSDK), to run as guests under Xen on the Xilinx Zynq UltraScale+ MPSoC. The container provides
virtual memory mapping, stack, fault handling, and an API to print to Xen's console. After setting up the
environment, the XZD Bare Metal container loads the payload application into virtual memory and then passes
control to it.

7.1.1. Bare Metal Guest Bootup
dom0 starts up the bare metal guest using the Xen tools, xl toolstack. As part of initializing the guest, Xen
allocates the configured amount of memory for it, and then copies the bare metal image to that memory
space, using information provided in the image header. At that point, Xen starts execution at Exception Level 1
at offset into the newly allocated memory space indicated by the image header.

The bare metal guest enters into src/head.S and initializes the low level register settings that the guest will
need to be set. Currently this includes setting up a direct guest physical address(GPA) to virtual address (VA)
mapping of UART1 (1 page at 0xFF010000) as well as 1 page of potentially shared memory at 0x7FFFF000. This
file should be modified to add additional MMU mappings if other memory regions are shared or I/O devices
are passed through to the guest. This file should also be modified, along with src/main.c if the 4MB limit needs
to be changed or a different application execution space is desired.

Next, the bare metal container branches to the arch_init function in src/setup.c. This is the first C code that
gets executed. Here the physical offset is saved to a global variable so it can be used for any direct memory
writes. Then a message gets printed on Xen's console to indicate the bare metal guest has booted to a point
where it is about to transfer control to the payload application. This is done using the console_io hypercall. This
call places a length and a character buffer in the correct registers and then interrupts into Xen. Xen then prints
that buffer onto its own console.

After this, the bare metal container calls the main function in src/main.c. Here the bare metal guest loads the
4MB of the payload application to memory at 0x40400000 and then passes control to the payload application.
This is where the location and size of the payload application can be changed as long as it remains consistent
with src/head.S and the application's link map.

http://dornerworks.com/

 Bare Metal Guests

User’s Manual www.dornerworks.com 39
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

7.1.2. Payload Application

The bare metal container is designed to accept a payload application in the form of an ELF file, such as a
standalone application generated by XSDK. The ELF file is converted to its binary equivalent and built with the
bare metal container, creating a resulting binary image that can be run from dom0's command line, by using
the ./build_it utility included in the repository.

Alternatively code can be modified in the src/setup.c and/or src/main.c to include the functionality directly.
Application should begin at the main function. Any new C file can be added to the src directory and the
Makefile will include it in the build without modifying any Makefiles or config files. The include directory is the
only include directory, so that is where all header files should be placed.

Because of the nature of Xen, the bare metal guest only has access to what it is assigned to in the configuration
file that is used to create the guest. There are a couple of options to get access to a device:

• Direct Passthrough - This gives a guest direct and usually exclusive access to a device. Information
on Ethernet device passthrough can be found in section 9.2 Passthrough. The example provided at
http://xzdforums.dornerworks.com/attachment.php?aid=2 includes passthough of UART1 to the
guest(s). Note in this case since UART1 does not require interrupts or SMMU for proper use, it can
be passed through to multiple guests. However, care must be taken to coordinate access of that
device between the guests using it, or unspecified behavior could result.

• Paravirtualized Devices - dom0 provides back-end drivers for some devices. To communicate with
these drivers, front-end drivers need to be implemented for the bare metal application. This requires
support for the XenStore, event channels, shared memory, and all of the related hypercalls. Support
for Xen’s virtual console has been added for FreeRTOS and bare metal guests.

7.2. Building the Bare Metal Guest
The following instructions assume you have followed Chapter 5 already.

7.2.1. Creating Payload Application
You are free to create your own payload application using whatever toolchain or workflow you like, as long as
the resulting application meets these requirements:

• Runs at EL1 or EL0,
• Is contained in a single ELF file,
• Uses less than 4MB of memory, and
• Is linked to, or can otherwise run at, address 0x40400000.

The first requirement is to ensure the guest runs at EL lower than Xen, which runs at EL2.

The second requirement can be mitigated with changes to the build_it script.

The last two requirements can be increased or altered with changes to the BMC source code.

http://dornerworks.com/

 Bare Metal Guests

User’s Manual www.dornerworks.com 40
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

An example application is provided in the XZD that can be built using Xilinx’s SDK (XSDK). Use the correct
$PLATFORM corresponding to your board. For the ZCU102 use ZCU102_hw_platform and for the Ultrazed use
zed_hw_platform. Create the payload application by following the following steps:

1. Create a Hello World application in XSDK targeting the $PLATFORM$ called $PROJECT_NAME in the
$XSDK_WORKSPACE. This should create three projects: the application project called $PROJECT_NAME,
a BSP project called $PROJECT_NAME”_bsp”, and a hardware platform project called $PLATFORM.
$ source /opt/Xilinx/SDK/2017.3/settings64.sh
$ xsdk

2. Copy the files from the XZD to overwrite those in the XSDK workspace:
$ cp $RELEASE_DIR/misc/examples/baremetal/app/src/* $XSDK_WORKSPACE/$PROJECT_NAME/src/
$ cp $RELEASE_DIR/misc/xzd_bmc/xzd_bmc.h $XSDK_WORKSPACE/$PROJECT_NAME/src/
$ cp -r $RELEASE_DIR/misc/examples/baremetal/bsp/* $XSDK_WORKSPACE/$PROJECT_NAME"_bsp"/

3. Clean and rebuild the XSDK project.

7.2.2. Building the Guest Image
To build the bare metal image, run the following command, targeting the ELF file you want to be your payload
application:
$ source /opt/Xilinx/petalinux-v2017.3-final/settings.sh
$ cd $RELEASE_DIR/misc/xzd_bmc
$./build_it $XSDK_WORKSPACE/$PROJECT_NAME/Debug/$PROJECT_NAME.elf

Example: if you created your XSDK workspace called “workspace” in your home directory, and named
your XSDK project “hello_world”, then the resulting command would be:

$./build_it ~/workspace/hello_world/Debug/hello_world.elf

This generates an xzd_bare.elf file and an xzd_bare.img binary image. The binary image is the file that
will be used as the kernel for the Xen guest. The xzd_bare.elf file can be used for debugging the bare
metal container portion and $PROJECT_NAME.elf can be used to debug the payload application.

7.3. Installing and Running the Guest Image in the XZD

7.3.1. Guest Image
The xzd_bare.img file needs to be transferred to dom0’s file system, typically by adding it to the file system or
by transferring it using TFTP or other network transfer protocol.

SD Card File System

This method is to simply mount the file system found on your SD card and copy the xzd_bare.img file directly
to it. This is the easiest method if you already have your File System populated to its own partition on an SD
card.

1. Insert SD card.

http://dornerworks.com/

 Bare Metal Guests

User’s Manual www.dornerworks.com 41
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

a. Mount SD partition if it does not automatically do so.
2. Copy files to the SD partition.

$ sudo cp xzd_bare.img $YOUR_MEDIA_MOUNT_PATH/root/.

3. Gracefully eject SD card using your host system’s recommended method.
$ umount $YOUR_MEDIA_MOUNT_PATH

Network Transfer

This method is to use network transfer protocol, such as TFTP, to move the xzd_bare.img file to the target.
Copy xzd_bare.img to the TFTP server’s base directory.

$ cp xzd_bare.img /tftpboot

1. From dom0, issue the command to retrieve the file.
$ tftp -g -r xzd_bare.img <HOST_IP>

7.3.2. Guest Configuration
Create a configuration file for the bare metal guest. An example Configuration File (/etc/xen/bare.cfg), which
passes UART1 through to the guest, is shown below:
name = "bare"
kernel = "/root/xzd_bare.img"
memory = 8
vcpus = 1
iomem = ["0xff010,1"]

7.3.3. Running the Guest
Boot up the XZD and in dom0 start up the bare metal guest with the following command:
$ xl create /etc/xen/bare.cfg

Terminate the bare metal guest with the following command:
$ xl destroy bare

7.4. XSDK Example
For the XSDK example, additional steps are needed to create a region of RAM for guests to share in the device
tree. An easy way to do this is to add a reserved-memory node to the end of the AMBA node definition in the
DTS file appropriate for your target (e.g., xen-zcu102.dts):
+ reserved-memory {

+ #address-cells = <2>;

+ #size-cells = <2>;

+ ranges;

+ guest_shared: guest@7ffff000{

+ reg = <0 0x7ffff000 0 0x1000>;

+ no-map;

http://dornerworks.com/

 Bare Metal Guests

User’s Manual www.dornerworks.com 42
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

+ };

+ };

To recompile the dts to dtb:
$ sudo apt install device-tree-compiler # if necessary
$ dtc -I dts -O dtb -o xen.dtb xen-${BOARD}.dts

An example of the DTB file can be found in $RELEASE_DIR/misc/examples/baremetal/config/. The resulting
xen.dtb will need to be added to the SD card or /tftpboot directory depending on your target and method of
booting it; see Chapter 3 Target Setup for more details.

To run multiple guests, the guest name needs to be unique. Furthermore, it is possible to pin guests to specific
CPU cores with the cpu attribute. These examples assume that the xzd_bare.img file has been renamed to
bm.img. A prebuilt version of bm.img can be found in $RELEASE_DIR/misc.

bm0.cfg:
name = "bm0"
kernel = "/root/bm.img"
memory = 8
vcpus = 1
cpus = [0]
iomem = ["0x7ffff,1", "0xff010,1"]

bm1.cfg:
name = "bm1"
kernel = "/root/bm.img"
memory = 8
vcpus = 1
cpus = [1]
iomem = ["0x7ffff,1", "0xff010,1"]

bm2.cfg:
name = "bm2"
kernel = "/root/bm.img"
memory = 8
vcpus = 1
cpus = [2]
iomem = ["0x7ffff,1", "0xff010,1"]

bm3.cfg:
name = "bm3"
kernel = "/root/bm.img"
memory = 8
vcpus = 1
cpus = [3]
iomem = ["0x7ffff,1", "0xff010,1"]

All four guests can be brought up from dom0's command line:
$ xl create bm0.cfg
$ xl create bm1.cfg
$ xl create bm2.cfg
$ xl create bm3.cfg

http://dornerworks.com/

 Bare Metal Guests

User’s Manual www.dornerworks.com 43
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Examples of these configuration files can be found in $RELEASE_DIR/misc/examples/baremetal/config/.

Please note that whenever multiple guests have access to the same resource, which could be shared memory
or an I/O peripheral device, some method should be used to ensure proper coordination between the different
threads of execution. The example XSDK project contains code for a spin lock to provide mutual exclusion for
both the shared memory and the UART.

http://dornerworks.com/

 Other Guests

User’s Manual www.dornerworks.com 44
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Chapter 8 Other Guests

DornerWorks is constantly working on getting new operating systems to run as guests on Xen.

In addition to Linux and bare metal guests, the XZD also provides libraries for making guests using FreeRTOS
run on Xen. The latest documentation can be found in the distribution at $(RELEASE_DIR)/docs/XZD FreeRTOS
Guest Guide.pdf.

http://dornerworks.com/

 Interacting with I/O Devices

User’s Manual www.dornerworks.com 45
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Chapter 9 Interacting with I/O Devices

9.1. Paravirtualization

Typically, dom0 is a full featured OS like Linux, and provides a plethora of device drivers. Xen takes advantage
of the availability of drivers by providing a means for guests to use those drivers through dom0. This requires
modification of the drivers in the guest, and is an example of paravirtualization. I/O Paravirtualization uses
software to share a device from a privileged guest, typically dom0, to any other guest that needs to access the
device. The privileged guest is the only one that has direct access to the device and contains the normal device
driver to interact with the device. Then what Xen calls a split driver is used to share the data from the privileged
guest to the other guests. A split driver is made up of a backend driver in the privileged guest and a frontend
driver in the other guests that want to access the device. The backend driver sets up a shared ring buffer, and
an event channel (a notification) for each guest that needs to access the device. The frontend driver in each
guest then connects via a wrapper Application Program Interface (API) to those sharing mechanisms.

Since the privileged guest arbitrates access to the device, the data from the device can be shared across virtual
machines without breaking partitioning. This is useful if multiple guests need to access the same I/O channel.
Another advantage is that the frontend driver presents an abstraction of the specific device, so that guests can
be more generic and thus more portable. This can be an initial drawback, because if the guest OS does not
support that frontend driver, it needs to be developed. Paravirtualization also adds another layer to the device
driver stack, therefore the performance will not be as fast as native OS usage of the device. If multiple guests
are sharing the same device the privileged guest must implement an allocation scheme to prevent a guest from
monopolizing that device. Since this method takes advantage of the strict memory sharing infrastructure of
Xen, it is a safe and secure method for handling I/O.

http://dornerworks.com/

 Interacting with I/O Devices

User’s Manual www.dornerworks.com 46
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

9.2. Passthrough
Xen has the capability to pass access to peripheral devices through to guest domains,
allowing that guest direct and unfettered access. For peripherals requiring high
performance, Xen configures the system memory management unit (SMMU) to handle
the necessary translations for any direct memory address (DMA) transactions initiated
by that peripheral as well as configures the Generic Interrupt Controller (GIC) to pass
interrupts to the guest domain. This allows the guest to use the device as if it was the
only software running in the system. This passthrough capability allows for practically
native performance and increases overall flexibility and stability in the system as the
SMMU enforces the memory mapping, preventing a guest from using its DMA-capable
peripheral to access data in another guest’s memory space.

Section 9.2.2 provides a link to a guide for passing a UART device to a guest, while
section 9.2.3 provides instructions for configuring the Xen system installed on the Xilinx
UltraScale+ MPSoC (MPSoC) to pass an Ethernet peripheral device through to a guest.

http://dornerworks.com/

 Interacting with I/O Devices

User’s Manual www.dornerworks.com 47
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

9.2.1. UART Passthrough
For instructions for passing a UART device to a guest domain, dom1, see the guide in the distribution at
$(RELEASE_DIR)/docs/XZD UART Pass Through How To Guide.

9.2.2. Ethernet Passthrough
The instructions documented here are specific for the Ethernet device, however can be generalized to pass
through any DMA-capable device via the SMMU.

It is assumed that the reader has an Ubuntu 14.04 or 16.04 host system and has downloaded the release image
mentioned in Chapter 2 Host Setup.

9.2.2.1. Modifying the Xen Device Tree
The first step in passing through an Ethernet device to a guest domain is to edit the xen.dts file located on the
host computer in the XZD development system. The general process for enabling device passthrough is to
disable the device from access to dom0 and to enable it for passthrough to a guest domain. We will disable
the GEM3 Ethernet controller and add an attribute that will allow it to be passed through. This will disable
network connectivity for dom0.

We need to convert the xen.dtb into a xen.dts file, which is a text file that we can edit. You can start with
$RELEASE_DIR/dts/xen-${BOARD}.dts. You can also use the the dtc command to create the dts file from the
dtb:

$ dtc -I dtb -O dts -o $RELEASE_DIR/xen.dts /tftpboot/xen.dtb

Open the xen.dts file and find the fourth Ethernet controller located at address 0xFF0E0000. The text found in
the xen.dts should look similar to that below.:

ethernet@ff0e0000 {
compatible = "cdns,zynqmp-gem";
status = "okay";
interrupt-parent = <0x4>;
interrupts = <0x0 0x3f 0x4 0x0 0x3f 0x4>;
reg = <0x0 0xff0e0000 0x0 0x1000>;
clock-names = "pclk", "hclk", "tx_clk", "rx_clk";
#address-cells = <0x1>;
#size-cells = <0x0>;
#stream-id-cells = <0x1>;
iommus = <0x8 0x877>;
power-domains = <0x10>;
clocks = <0x3 0x1f 0x3 0x34 0x3 0x30 0x3 0x34>;
phy-handle = <0x11>;
phy-mode = "rgmii-id";
pinctrl-names = "default";
pinctrl-0 = <0x12>;
linux,phandle = <0x2a>; ethernet@ff0c0000 {

phy@c {
reg = <0xc>;

http://dornerworks.com/

 Interacting with I/O Devices

User’s Manual www.dornerworks.com 48
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

ti,rx-internal-delay = <0x8>;
ti,tx-internal-delay = <0xa>;
ti,fifo-depth = <0x1>;
ti,rxctrl-strap-worka;
linux,phandle = <0x11>;
phandle = <0x11>;

};
};

Once the Ethernet controller is located , edit the xen.dts to change status to “disabled” and add the attribute
“xen,passthrough = <0x1>; “, resulting in something similar to the following:.

ethernet@ff0e0000 {
compatible = "cdns,zynqmp-gem";
status = "disabled";
xen,passthrough = <0x1>;
interrupt-parent = <0x4>;
interrupts = <0x0 0x3f 0x4 0x0 0x3f 0x4>;
reg = <0x0 0xff0e0000 0x0 0x1000>;
clock-names = "pclk", "hclk", "tx_clk", "rx_clk";
#address-cells = <0x1>;
#size-cells = <0x0>;
#stream-id-cells = <0x1>;
iommus = <0x8 0x877>;
power-domains = <0x10>;
clocks = <0x3 0x1f 0x3 0x34 0x3 0x30 0x3 0x34>;
phy-handle = <0x11>;
phy-mode = "rgmii-id";
pinctrl-names = "default";
pinctrl-0 = <0x12>;
linux,phandle = <0x2a>;

phy@c {
reg = <0xc>;
ti,rx-internal-delay = <0x8>;
ti,tx-internal-delay = <0xa>;
ti,fifo-depth = <0x1>;
ti,rxctrl-strap-worka;
linux,phandle = <0x11>;
phandle = <0x11>;

};
};

If you have built from source using Chapter 5, an example of the above changes can be seen by decompiling
the ‘Image-xen-zcu102-enet_pt.dts’ file in your ‘$RELEASE_DIR/Xocto/build/tmp/deploy/images/zcu102-
zynqmp/’ folder. After the dts has been modified, we need to compile the dts back into the dtb and ensure
that it is the saved in the correct location depending on your booting methods (/tftpboot/ or on the BOOT
partition of the SD card). Enter the following command to perform this task:

http://dornerworks.com/

 Interacting with I/O Devices

User’s Manual www.dornerworks.com 49
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

$ dtc -I dts -O dtb -o /tftpboot/xen.dtb $RELEASE_DIR/xen.dts

or
$ dtc -I dts -O dtb -o /media/$USER/BOOT/xen.dtb $RELEASE_DIR/xen.dts

9.2.2.2. Modifying the Domain Configuration File
The next two files that require modification are done on the dom0 file system from the XZD development
system. Locate the configuration file for the guest domain that will be using the passed-through Ethernet
device. Edit your dom1.cfg, located in /etc/xen, by adding the text below to the bottom of the file. In addition
to adding the text below, make sure that you either comment out or delete the virtual device at approximately
line 39. This line begins with ‘vif’.

Ethernet Device
This will set up the Ethernet so that it is
accessible to this guest domain.
dtdev = ["/amba/ethernet@ff0e0000"]
device_tree = "/etc/xen/xen-partial.dtb"
irqs = [95]
iomem = ["0xff0e0,1"]

Figure 1: Editing the guest domain configuration file

The lines above add gem3 exclusively to the guest domain, in this case, domain 1. The options needed for
passthrough are defined below:

dtdev : The absolute path of the device to passthrough in the device tree
device_tree : dom0 path to partial device tree to be passed to the guest
irqs : IRQ number to be given to the guest
iomem : The physical pages to be passed in to the guest

9.2.2.3. Creating a Partial Device Tree
The last step in setting up the system for passthrough involves creating a device tree for the domain called a
partial device tree.

Create a new file and name it xen-partial.dts. Ensure that this file is located in the device_tree path indicated in
the configuration file shown in Figure 1. The entire xen-partial.dts should be saved on your SD card in the dom0
extended FS at ‘/media/$USER/rootfs/overlay/etc/xen’ , or on the target at ‘/etc/xen’, and look like the one
below:

/dts-v1/;

/ {
 #address-cells = <0x2>;
 #size-cells = <0x1>;

 passthrough {
compatible = "simple-bus";

http://dornerworks.com/

 Interacting with I/O Devices

User’s Manual www.dornerworks.com 50
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

ranges;
#address-cells = <0x2>;
#size-cells = <0x1>;

misc_clk {
 #clock-cells = <0x0>;
 clock-frequency = <0x17d7840>;
 compatible = "fixed-clock";
 linux,phandle = <0x2>;
 phandle = <0x2>;
};

ethernet@ff0e0000 {
 #stream-id-cells = <0x1>;
 compatible = "cdns,gem";
 reg = <0x0 0xff0e0000 0x1000>;
 interrupts = <0x0 0x3f 0x4 0x0 0x3f 0x4>;
 clock-names = "pclk", "hclk", "tx_clk";
 clocks = <0x2 0x2 0x2>;
 #address-cells = <0x1>;
 #size-cells = <0x0>;
 phy-handle = <0x1>;
 phy-mode = "rgmii-id";

 phy@c {
 reg = <0xc>;
 ti,rx-internal-delay = <0x8>;
 ti,tx-internal-delay = <0xa>;
 ti,fifo-depth = <0x1>;
 linux,phandle = <0x1>;
 phandle = <0x1>;

 };
};

 };
};

Figure 2: xen-partial.dts

The xen-partial.dts now needs to be compiled into a binary file known as a device tree blob (dtb). We will use
the host’s dtc compiler, mentioned above, to compile the dts file into a dtb file.

Generate the dtb file by entering the following command:

$ dtc -I dts -O dtb -o xen-partial.dtb xen-partial.dts

9.2.2.4. Communicating with the Domains
You are now ready to boot both domain 0 and domain 1, each one is assigned a unique Ethernet device. To
test the Ethernet device passthrough with the ZCU102, one can ping a domain when logged into another
domain and visa-versa.

http://dornerworks.com/

 Interacting with I/O Devices

User’s Manual www.dornerworks.com 51
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

One can also use the nc, or netcat, command that tests the ability to communicate between the domains and
the host computer. To log into the host computer from a domain, enter the following command on your host
computer.

$ nc -l 4321

This will create a quick server that can be used to communicate to other systems via an IP address. On one of
the domains, enter the following command.

telnet 10.0.2.2 4321

This will set up a connection with the host and allow you to send characters between the domain and the host
computer. Entering ctrl-c in the domain will break the connection. Now follow the same steps in the other
domain to test the other Ethernet device.

http://dornerworks.com/

User’s Manual www.dornerworks.com 52
Xilinx-XenZynq-DOC-0001 v1.07 August 21, 2019

Chapter 10 Additional Support Solutions

10.1. Current Support Options
For more information and support, please visit our web site.

http://dornerworks.com/services/xilinxxen

Details on the Xilinx Zynq UltraScale+ MPSoC can be found here:

http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

http://dornerworks.com/
http://dornerworks.com/services/xilinxxen
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

	Revision History
	Chapter 1 Introduction
	1.1. Introduction to Virtuosity™, Xen Zynq Distribution
	1.1.1. Introduction to Xen and Virtualization
	1.1.2. Benefits of Hypervisors and Virtualization

	1.2. Introduction to the Xilinx Zynq UltraScale+ Multiprocessor System-on-Chip (MPSoC) Platform

	Chapter 2 Host Setup
	2.1. Release Image
	2.2. Setting up Host OS
	2.2.1. Required Tools
	2.2.2. Required Libraries

	2.3. Installing the Image
	2.4. Setup TFTP Server

	Chapter 3 Target Setup
	3.1. Target Board
	3.1.1. Setting up Dual Partition SD Card

	Chapter 4 Booting and Running XZD
	4.1. Booting the Target
	4.1.1 Booting via SD Card
	4.1.1.1 Configure ZCU102 Boot Mode Switches
	4.1.1.
	4.1.1.2 Configure UltraZed Boot Mode Switches
	4.1.1.3 Connect UART and Boot

	4.1.2. Booting via JTAG

	4.2. Running XZD
	4.2.1. Booting a Guest
	4.2.2. Copying a Guest
	4.2.3. Booting Guests with Alternate File Systems

	Chapter 5 Building from Source
	5.1. Environment Setup and Build Process
	5.2. Build Dom0 Linux Kernel, Xen, U-Boot, & FSBL
	5.2.1. Customizing the Image

	5.3. Installing and Using Built Images

	Chapter 5
	5.4. Creating More Guests

	Chapter 6 Xen on Zynq
	6.1. Xen Boot Process
	6.2. xl – Interfacing to Xen
	Chapter 6
	6.1.
	6.2.
	6.2.1. Listing Domains
	6.2.2. Creating a Guest Domain
	6.2.3. Shutting Down or Destroying a Guest Domain
	6.2.4. Switching Between Domains

	6.3. xentop – Analyzing Domain Resource Utilization
	6.4. Shared Memory
	6.3.
	6.4.
	6.4.1. libvchan
	6.4.2. Example: Using libvchan for Inter-domain Communication

	Chapter 7 Bare Metal Guests
	7.1. Introduction
	7.1.1. Bare Metal Guest Bootup
	7.1.2. Payload Application

	7.2. Building the Bare Metal Guest
	7.2.1. Creating Payload Application
	7.2.2. Building the Guest Image

	7.3. Installing and Running the Guest Image in the XZD
	7.3.1. Guest Image
	7.3.2. Guest Configuration
	7.3.3. Running the Guest

	7.4. XSDK Example

	Chapter 8 Other Guests
	Chapter 9 Interacting with I/O Devices
	9.1. Paravirtualization
	9.2. Passthrough
	9.2.1. UART Passthrough
	9.2.2. Ethernet Passthrough
	9.2.2.1. Modifying the Xen Device Tree
	9.2.2.2. Modifying the Domain Configuration File
	9.2.2.3. Creating a Partial Device Tree
	9.2.2.4. Communicating with the Domains

	Chapter 10 Additional Support Solutions
	10.1. Current Support Options

