DornerWorks

Write Vectorized Code and Optimize Your CPU Performance

Posted on December 2, 2019 by Kevin Kredit

Writing vectorized code is an acquired skill. Whether you’re writing code for a hard deadline or for pleasure, and whether your project is greenfield development or an inherited codebase, developing clean, efficient, and effective vectorized code requires thought and effort.

So why bother?

Vectorization enables your software to get the most performance possible from your hardware. The days are over when clock frequency alone drove CPU performance; gains increasingly come from data width and core count. Getting the most out of your chip means taking advantage of its supported vector instruction sets.

To get going down the right path, it is important to know a few key elements—what vectorization is, when it is applicable, some development strategies, and how to keep things maintainable.

What is Vectorization?

Vector instructions are a special set of intrinsic functions that take advantage of data parallelism. Data parallelism occurs in when the same operation needs to be applied to large amounts of data in a sequentially independent manner. The most fundamental examples are array and matrix manipulation, with applications in graphics and signal processing.

There are several approaches to tackling data parallelism. The simplest implementation is to put the operations in a loop, executing the instruction on a single element each iteration. The next most familiar implementation is parallelizing that loop with threads, with each thread executing the instruction on single element of a subset of the data each iteration. The vectorized implementation, by contrast, executes the instruction on multiple elements each iteration.

Vector instructions are also known as Single Instruction-Multiple Data (SIMD) instructions and can operate on data widths ranging from 64-512 bits. This is parallel processing on a single core, and can even be used in tandem with threading to maximize the throughput of the entire system.

When to use vectorization in software development

Vector instructions are best applied in certain situations. There are a number of qualifications you can use to check if the performance benefits of vectorizing your code will be worth the effort.

  1. The first qualification is that the application involves significant mathematical or logical operations that qualify as data parallel. Vector instructions munch on data; they do not manage control flow or interact with peripherals.
  2. The second qualification is CPU support. There are many instruction sets with varying support in different processor families. Intel has its SSE and AVX families and ARM has NEON and its relatively new SVE, just to name a few. While most modern processors have some level of vector instruction support, knowledge of the capabilities in your operating environment comes first.
  3. The third qualification is that performance is critical. Development of vectorized code takes time and care; if the application doesn’t need to operate at top speed, it can be hard to justify the effort. That said, there are many cases where these criteria are met. In processor-limited, time-critical applications that spend 90% of the time in 10% of the code doing mathematical operations on a vector-capable processor, vector instructions can provide immense performance improvements.

Getting started with vectorization

Once you’ve decided to develop vectorized code, following a few tips can make the process simpler and the results better.

  1. The first step is to identify the precise region to vectorize. It needs to meet all the criteria above—having data parallelism, doing math intensive work, and occupying a large portion of the time profile.
  2. The second step is to ask yourself—do I actually have to write this? The applications that lend themselves to this kind of processing are often inherently basic, such as multiplying matrices or performing FFTs. Libraries exist for these purposes, and they often already have vector instruction support. As a matter of fact, we are proud to have created a fork of the free and open source KISS FFT library by adding SSE and AVX vector support for this very purpose. These libraries are a boon to vectorized development. As when writing your own code, when using a library it will likely be necessary to do pre- and post-processing to get the data in and out of the right format. However, if the data layout is designed with this in mind from the beginning, even the work at the interface can be small.
  3. The third step is to choose your instruction set and familiarize yourself with it. What instructions are available? Which are useful to you? How important is portability? You may find that you rely primarily on a general-purpose instruction set such as AVX, but during some portion you may use a specialized set of intrinsics such as BMI for precise bit manipulation or AES for encryption. When doing the research, documentation resources such as this one by Intel are invaluable.

Portability considerations play a large role in instruction set selection, but keep in mind that there are different kinds of portability.

DornerWorks has created a fork of the free and open source KISS FFT library by adding SSE and AVX vector support to help with your development.

Do you want the same binary to run with high performance in multiple environments? Then you may use Intel’s _may_i_use_cpu_feature, or the more general cpuid functionality in order to determine the supported instructions and dynamically choose the best implementation. Or, do you want the same source code to be recompilable for different processors, and the lower level details managed for you? Then you may use Visual Studio’s auto-vectorizer tool (though it has limited capabilities) or the generalized GNU vector extension instructions, which support the SSE, AVX, and NEON instruction sets under a common hood. Note that choices made at this stage can effectively either lock you into an instruction set while allowing for tool portability, or lock you into a tool while allowing for instruction set portability.

Choose the solution appropriate for your situation.

Development techniques for building software with vectorization

Once you’ve identified your vectorizable region, vetted any libraries you may interface with, and chosen an instruction set, it’s time to dive in. Start with a non-vectorized implementation to prove out the base algorithm, then get vectorizing. Preprocess the input, perform operations, and postprocess the output. Know that there’s a lot more work going into data management than in ordinary code. Memory-align buffers on multiples of your instruction width, and mind data format and sizes. Use smaller data sizes when practical to squeeze more value into each clock cycle.

Experiment, debug, and optimize.

During this stage, two techniques make development faster: utilizing preexisting code and creating visualizations.

Preexisting vectorized code makes development far easier. If you’re porting code to a new instruction set, there are often corresponding functions. For example, AVX is essentially a 256-bit version of the 128-bit SSE; when porting from one to the other, it at times can be (almost) as simple as including the new header and adding the “256” identifier in the instruction names. Even when the correspondence isn’t that high, preexisting code offers a proven data structure and processing flow.

Visualizations are another valuable tool. It is easy to mentally juggle a few variables processed in a single pass, less so when you are processing eight or sixteen values at once, with intermediates, shuffling, shifting, and extracting. Drawing the data path out by hand or in a spreadsheet makes things much clearer. Getting from point A to point D can be intimidating. Finding an instruction that can get you from A to B, then from B to C, and finally from C to D, and visualizing this flow with a spreadsheet makes things seem much more manageable.

Implementing portability and maintainability in vectorized code

Once the vectorized code is prototyped and functional, you are still not quite done. First you make it work, then you make it right.

Due to the inherent complexity of vectorization, there is a greater need for clear, concise, and readable code. Some situations call for portability and backwards compatibility; this is certainly the case when writing non-embedded code that will run in an unknown environment. Defining a common, minimal interface helps keep runtime selection for portability maintainable.

It may take some extra effort, but developing vectorized code results in high performing applications that take full advantage of available hardware features. When done well, it remains portable and clean, and its development can be a very rewarding experience.

This should provide a basis for you to get going on your own vectorized application, but if you think we can help with your next project, contact DornerWorks for a free consultation.

Kevin Kredit
by Kevin Kredit
Embedded Engineer
Kevin Kredit is an embedded engineer at DornerWorks.