DornerWorks

RF Signals are Connected to FPGA Acceleration in AMD’s RFSoC, Revolutionizing (and Miniaturizing) Wireless Communication

Posted on February 5, 2018 by Matthew Russell

If the future is connected, the Zynq UltraScale+ RFSoC is a crystal ball.

Radio frequency communications have long provided products in aerospace and defense, the automotive industry, the industrial sector, and even healthcare with a means of data transmission, but they have also required stand-alone subsystems to translate those streams.

AMD RFSoC
The RFSoC in DornerWorks’ continuous integration lab.

As the world sees an exponentially growing number of people and devices using wireless technology, our aging communication infrastructure will need some updates.

Massive Multiple-Input Multiple Output (MIMO) arrays have been able to reduce power dissipation and solve the bottleneck problem by transmitting messages in smaller pieces, simultaneously, from separate antennae. The data must be received, translated, and transmitted incredibly quickly, however, which requires discrete signal processing devices. And as the number of antennae increase, so do the considerations for signal and power integrity.

Simply put, 5G will allow more data to be sent over millimeter wavelengths, but standard antennae setups cannot reliably capture and analyze that data without some incredibly powerful signal processing tethered directly to the dish.

Target RFSoC Applications

  • Wireless systems
  • Cable access devices
  • Test & measurement
  • Early warning / radar
  • High performance RF applications

Direct RF Conversion

The new Zynq UltraScale+ RFSoC from AMD eliminates that problem altogether by connecting data from the RF signal chain to FPGA accelerated hardware and software logic, allowing direct conversion of that data without intermediary devices. Not just a novel technology, the RFSoC is a game changer for:

  • 5G baseband wireless communications
  • Millimeter wave mobile backhaul
  • Cable Remote-PHY
  • Milcom / airborne radio
  • And other high performance RF applications

RFSoC

Some Assembly Required

FPGA acceleration has allowed companies to realize a powerful and efficient means of data transmission, analysis, and encryption. It saves costs in size, weight, and power, (SWaP) but it requires no small amount of development hours.

The RFSoC technology is in extremely limited early release right now, and DornerWorks is one of very few design houses in the world with development expertise on this equipment.

Exploring the board’s potential in one of DornerWorks’ labs, embedded engineer Jeff Kubascik explains how this device will change the way robust wireless communications systems are designed from the ground up, or at least from the antennae down.

The RFSoC opens up some opportunities with miniaturization and phased array systems, Kubascik says. The robust RF processing capabilities directly integrated into the SoC architecture can enable precision sensing and wireless communication for the smart vehicles and wearable devices of the future. Even the U.S. government’s Multi-function Phased Array Radar (MPAR) will no doubt rely on RFSoC technology to condense and improve its own aircraft and weather surveillance systems.

Discrete Implementation

4×4
100MHz
4×4
200MHz
8×8
100MHz
Programmable Device 15W 23W 23W
RF ACD/DAC Components 16W 16W 32W
Total Power of Discrete Implementation 31W 39W 55W

Integrated RF-Analog Implementation

Programmable Device + DC Subsystem 18W 25W 27W

Total Power Savings

13W 14W 28W
Percentage decrease 41% 37% 51%

Hardware Updates

Including ADCs and DACs in the 16nm UltraScale+ MPSoC replaces the need for separate converters, transceivers and other signal conditioning equipment, realizing up to a 50-75 percent reduction in SWaP costs. The outmoded analog optical line-out has been replaced with an Ethernet port, improving network capacity, scale, and performance, while Soft-decision Forward Error Correction (SD-FEC) cores help the device meet 5G and DOCSIS 3.1 standards.

RFSoC Highlights

  • Eight 4GSPS or sixteen 2GSPS 12-bit ADCs
  • Eight to sixteen 6.4GSPS 14-bit DACs
  • Integrated SD-FEC cores with LDPC and Turbo codecs for 5G and DOCSIS 3.1
  • ARM processing subsystem with Quad-Core Cortex-A53 and Dual-Core Cortex-R5s
  • 16nm UltraScale+ programmable logic with integrated Nx100G cores
  • Up to 930,000 logic cells and over 4,200 DSP slices

Future Applications

The Zynq UltraScale+ RFSoC has tremendous potential for applications in aerospace and the military, as well as consumer-focused wireless networks, and is currently the only RFSoC in production today. It leverages FPGA programmable logic to enable powerful and portable, low power RF signal processing, and DornerWorks engineers like Kubascik are already experimenting with tools like Matlab, Simulink, and C/C++ to create HDL and VHDL models.

We’ve launched many successful FPGA and MPSoC projects with the help of trusted partners like AMD, and we’re one of very few AMD Premier Adaptive Computing Partners in North America offering design services, now putting those services to work on the leading edge of connected technology with the Zynq UltraScale+ RFSoC. Contact us to learn how you can take advantage of the RFSoC’s capabilities in your own system, and get your next project started today!

Matthew Russell
by Matthew Russell